

1dBerLog 2007

Todays programme:
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules

2dBerLog 2007

Predicate Logic
• Sten kan ikke flyve og morlille kan ikke flyve

ergo er morlille en sten!
• (∀x. (S(x) → ¬ F(x))) ∧ ¬F(morlille)) |= S(morlille)

•Fugle kan flyve og piphans er en fugl
ergo kan piphans flyve!

•(∀x. (B(x) → F(x))) ∧ B(piphans)) |= F(piphans)

3dBerLog 2007

Predicate Logic
Female(girl).
Floats(duck).
Sameweigth(girl, duck).
Witch(X) :- Burns(X).
Burns(X) :- Wooden(X).
Wooden(X) :- Floats(X).
Floats(X) :- Sameweight(X, Y), Floats(Y).

Witch(girl)?

4dBerLog 2007

Predicate Logic
Female(girl),
Floats(duck),
Sameweigth(girl, duck),
∀x Witch(x) ← Burns(x),
∀x Burns(x) ← Wooden(x),
∀x Wooden(x) ← Floats(x),
∀ x,y (Floats(x) ← Sameweight(x, y) ∧ Floats(y))

|= ?
Witch(girl)

5dBerLog 2007

Predicate Logic - syntax examples

• Constants: girl, duck
• Predicate symbols P: Female, Floats,.... with arity 1

Sameweight with arity 2

6dBerLog 2007

Predicate Logic for Natural Numbers

∀ ∀x. Even(x) → Even(succ(succ(x)))

∀ ∀x. ∀y. (Even(x) ∧ y = x+2) → Even(y)

∀ ∀x. x + 0 = x

• (A(0) ∧ (∀x. A(x) → A(x+1)) → ∀x. A(x)

7dBerLog 2007

Predicate Logic - syntax examples

• Constants: girl, duck
• Predicate symbols P: Female, Floats,.... with arity 1

Sameweight with arity 2

• Constants 0,1,2,...
• Function symbols F: +, × both with arity 2
• Predicate symbols P: = with arity 2

8dBerLog 2007

Predicate Logic - syntax

• Variables x,y,z,...
• Constants C: c1, c2,....

• Function symbols F: f,g,h... each with some arity n>0

• Terms
t ::= c | x | f(t1, t2,..tn)

9dBerLog 2007

Predicate Logic - first order language, wwf’s

• Predicate symbols P: P, Q, R each with some arity n 0≥

• Well formed formulae wff:
Φ ::= P(t1, t2, .., tn) |

 ¬ Φ | Φ ∨ Φ | Φ ∧ Φ | Φ → Φ |
 ∀ x Φ | ∃ x Φ

10dBerLog 2007

Predicate Logic - Interpretations

• An interpretation I for a first order predicate logic language
consists of

D, a domain of concrete values

for each constant cI an element of D
for each f ∈ F with arity n, a function fI: Dn → D
for each P ∈ P with arity n, a subset PI ⊆ Dn

11dBerLog 2007

Predicate Logic - interpretations example

• D: objects from the real world
girl: the girl in question
duck: the duck on the scales
Female: those objects which are female
Sameweight: those pairs of objects with the same
weight

I |= ¬Wooden(girl) ∧ ¬Witch(duck)
I |= ∃ x Female(x) since I |= Female(girl)

12dBerLog 2007

Predicate Logic
Female(girl),
Floats(duck),
Sameweigth(girl, duck),
∀x Witch(x) ← Burns(x),
∀x Burns(x) ← Wooden(x),
∀x Wooden(x) ← Floats(x),
∀ x,y (Floats(x) ← Sameweight(x, y) ∧ Floats(y))

|= ?
Witch(girl)

13dBerLog 2007

Predicate Logic - interpretations example

• D: Natural numbers, N
0,1,..: the numbers zero, one,...
 +, × : sum and mutiplication on N
=: equality on N

I |= ∀x. x + 0 = x
I |= ∀ x ∃ y (y = x+1)

I |= x + 1 = y?

14dBerLog 2007

Predicate Logic - valuations

• A valuation v in an interpretation I of a first order language
is a function from the terms of L to the domain D of I such
that

v(c) = cI for all constants
v(x) ∈ D for all variables x
for each f ∈ F with arity n, v(f(t1,..,tn)) = fI(v(t1),..,v(tn))

• That is essentially a ”look-up table”
v: free variables → D

15dBerLog 2007

Predicate logic - free and bound variables

• (∀x (P(x) ∧ Q(x)) → (P(x) → Q(y))

→

→

P Q

x y

∀ x

∧

P Q

x x

freebound

16dBerLog 2007

Predicate logic - free and bound variables

• (∀x (P(x) ∧ Q(x)) → (P(x) → Q(y))

→

→

P Q

x y

∀ x

∧

P Q

x x

Scope of

17dBerLog 2007

Predicate Logic - satisfaction (semantics)

• Given an interpretation, I, for a first order language, a
valuation v, and a formula A, v satisfies A

• I |=v A iff

if A = P(t1, t2,.., tn) then (v(t1), v(t2),.., v(tn)) ∈ PI

if A = ∀ x B then I |=v[x←d] B for all d ∈ D

if A = ∃ x B then I |=v[x←d] B for some d ∈ D

if A = ¬ B, B ∨ C, B ∧ C, B → C
then ”as in propositional logic”

18dBerLog 2007

Predicate Logic - interpretations examples

D: natural numbers 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=v ∃ y (y = x+1) ?

19dBerLog 2007

Predicate Logic - interpretations examples

D: natural numbers 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=[0/x] ∃ y (y = x+1)

I |=[0/x] ∃ y (x = y+1)

20dBerLog 2007

Predicate Logic - interpretations examples

• D: integers ...-2, -1, 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=[0/x] ∃ y (y = x+1)

I |=[0/x] ∃ y (x = y+1)

21dBerLog 2007

Predicate Logic -Truth and Validity

• A wwf A is true in an interpretation I iff every valuation in
I satisfies A, notation: I |= A

• A wwf A is false in an interpretation I iff no valuation in I
satisfies A

• A wwf A of a first order language L is (logically) valid iff
it is true in every interpretation of L, notation: |= A

• A wwf A of a first order language L is (logically)
contradictory iff it is false in every interpretation of L

22dBerLog 2007

Predicate Logic - interpretations examples

D: natural numbers 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |= ∀x ∃ y (y = x+1)
I |= ∀x ∃ y (x = y+1) since I |=[0/x] ∃ y (x = y+1)

|= ∀x ∃ y (x = y+1) - follows from above!
|= ∀x ∃ y (y = x+1) - why?

23dBerLog 2007

Predicate Logic - quiz

Truth in N: True False Valid Contr.
1. x+1 = y
2. ∀x (x = x+1)
3. ∀x ∀y (x+y = y+x)
4. ∃ x (P(x) ∧¬ P(x))
5. (∃ x ¬ P(x)) →

 (¬ ∀x P(x))

24dBerLog 2007

Predicate Logic - quiz

Truth in N: True False Valid Contr.
1. x+1 = y
2. ∀x (x = x+1) √
3. ∀x ∀y (x+y = y+x) √
4. ∃ x (P(x) ∧¬ P(x)) √ √
5. (∃ x ¬ P(x)) →

 (¬ ∀x P(x)) √ √

25dBerLog 2007

Predicate Logic -Truth and Validity

• Following Kelly we include the following predicate
constants in our syntax for predicate logic:

• _|_ standing for the always false predicate, i.e. the
predicate which is false in every interpretation

∀  | standing for the always true predicate, i.e. the
predicate which is true in every interpretation

26dBerLog 2007

Todays programme:
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules

27dBerLog 2007

Predicate logic - axiomatic proof system

• Axioms:
– Ax1 A → (B → A)
– Ax2 (A → (B → C)) → ((A → B) → (A → C))
– Ax3 (¬A → ¬ B) → (B → A)

• Deduction rules: A, A → B
– Modus ponens MP B

28dBerLog 2007

Predicate logic - axiomatic proof system

• Axioms:
– Ax1 A → (B → A)
– Ax2 (A → (B → C)) → ((A → B) → (A → C))
– Ax3 (¬A → ¬ B) → (B → A)
– Ax4 (∀x) A(x) → A(t/x) where t is free for x in A!
– Ax5 (∀x) (A → B) → (A → (∀x) B) no free occ’s of x in A!

• Deduction rules: A, A → B
– Modus ponens MP B

29dBerLog 2007

Predicate logic - substitution

A[t/x] notation for
”A with all free occurrences of x substituted by t”

• Examples
((∀x (P(x) ∧ Q(x)) → (P(x) → Q(y))) [f(y)/x] =

 (∀x (P(x) ∧ Q(x)) → (P(f(y)) → Q(y))

 ((∀y (P(y) ∧ Q(x)) → (P(y) → Q(x))) [f(y)/x] = ??

30dBerLog 2007

Predicate logic - substitution

• A[t/x] is only defined if ”t is free for x in A”:
no free occurrence of x in A occurs within the scope of
∀y or ∃y for any variable y occurring in t

• For all t,x,A, - t can always be made free for x in A
by a suitable renaming of bindings ∀y, ∃y in A

• Example
 ((∀y (P(y) ∧ Q(x)) → (P(y) → Q(x))) [f(y)/x] =
 (∀z (P(z) ∧ Q(f(y))) → (P(y) → Q(f(y)))

31dBerLog 2007

Predicate logic - axiomatic proof system

• Axioms:
– Ax1 A → (B → A)
– Ax2 (A → (B → C)) → ((A → B) → (A → C))
– Ax3 (¬A → ¬ B) → (B → A)
– Ax4 (∀x) A(x) → A(t) where t is free for x in A!
– Ax5 (∀x) (A → B) → (A → (∀x) B) no free occ’s of x in A!

• Inference rules: A, A → B
– Modus ponens MP B

– Generalisation G A
 (∀x) A

32dBerLog 2007

Example of proof

• Assume that y does not occur in A(x)
Prove (∀x) A(x) → (∀y) A(y)

1. (∀x) A(x) Hyp
2. (∀x) A(x) → A(y) Ax4 (y free for x in A)
3. A(y) MP 1,2
4. (∀y) A(y) G

33dBerLog 2007

Pred. Logic - soundness and completeness

• Gödel’s Completeness Theorem
Our set of proof rules (the 3 axioms and MP from
propositional logic plus the 2 extra axioms and G) is
sound and complete for predicate logic!

• Proof
Look for Gödel’s proof!

34dBerLog 2007

Validity for predicate logic

• Validity problem for predicate logic:
Given a first order predicate logic formula A,
is A valid, i.e. |= A?

• Theorem
The validity problem for predicate logic is unsolvable

Proof: can be shown by a reduction from PCP
•Corollary

The set of valid formulas in predicate logic is
recursively enumerable, but not recursive

 Proof: ??

35dBerLog 2007

Validity for predicate logic

• Validity problem for predicate logic:
Given a first order predicate logic formula A,
is A valid, i.e. |= A?

• Theorem
The validity problem for predicate logic is unsolvable

Proof: can be shown by a reduction from PCP
•Corollary

The set of valid formulas in predicate logic is
recursively enumerable, but not recursive

 Proof: Gödel’s completeness theorem

36dBerLog 2007

Todays programme:
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules

37dBerLog 2007

Programming language PLN - syntax

• Constants:
natural numbers: 0, 1, 2,..
boolean constants: true, false

• Con ::= 0, 1, 2, ...
• Var::= x, y, z, ...
• E::= Con | Var | E + E | E ∗ E | (E)
• B::= true | false | ¬B | B ∧ B | B∨ B | E = E | (B)
• C::= x := E | C ; C | if B then C else C | while B do C

38dBerLog 2007

PLN example C = Fac

y := 1; z := 0;
while ¬ (z = x) do

z := z + 1
y := y ∗ z

39dBerLog 2007

PLN semantics

• A PLN state associates natural numbers to program
variables: States: Var → N

• The operational semantics of PLN defines the semantics of
a program C as a PARTIAL function

Sem[C]: States → States
where Sem[C](s) =

s’ if C when started in state s
terminates in state s’

undefined otherwise

40dBerLog 2007

PLN semantics, example C = Fac

y := 1; z := 0;
while ¬ (z = x) do

z := z + 1
y := y ∗ z

Sem[Fac](x = 4, y = 0, z = 0,...) =
(x= 4, y = 24, z = 4,...)

41dBerLog 2007

PLN specifications syntax

• A correctnes specification of a program C is a Hoare triple
of the form

 { φ } C { ψ }
where φ (precondition) and ψ (postcondition) are first order
predicate logic formulae over variables (including PLN
program variables) and constants/functions/predicates
interpreted in the model of natural numbers.

42dBerLog 2007

Hoare triples - for Fac
y := 1; z := 0;
while ¬ (z = x) do

z := z + 1
y := y ∗ z

• |=par { | } Fac {y = x!}
• |=par {x>5} Fac {z=x}

• |=tot { | } Fac {y = x!}

43dBerLog 2007

Pre/postcondition interpretation

• Let N be the predicate logic interpretation of natural
numbers with a (yet unspecified) vocabulary of constants,
functions and predicates - all interpreted ”in the standard
way”.

• Note that PLN states are nothing but predicate logic
valuations!

44dBerLog 2007

Hoare triples - semantics
• { φ } C { ψ } is said to be satisfied under partial correctness

 |=par { φ } C { ψ }
iff for all states s,

if N |=s φ, and Sem[C](s) is defined and equal to s’
then N |=s’ ψ

• { φ } C { ψ } is said to be satisfied under total correctness
 |=tot { φ } C { ψ }

iff for all states s,
if N |=s φ, then
Sem[C](s) is defined, and if Sem[C](s) = s’ then N |=s’ ψ

45dBerLog 2007

Hoare proof rules := and ;

{ψ [E/x]} x := E {ψ}
Ass-axiom

{φ} C1 {η} {η} C2 {ψ}

{φ} C1 ; C2 {ψ}
Comp-rule

46dBerLog 2007

Hoare proof rules if and while

{φ} if B then C1 else C2 {ψ}
If-rule

{ψ ∧ B} C {ψ}

{ψ} while B do C {ψ ∧ ¬B}
While-rule

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

47dBerLog 2007

A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do

 if m > n then m:=m-n
else n:= n-m;

r:= m
{ r = gcd(m0, n0) }

48dBerLog 2007

A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do

 if m > n then m:=m-n
else n:= n-m;

{η}
r:= m
{ r = gcd(m0, n0) }

49dBerLog 2007

A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do

 if m > n then m:=m-n
else n:= n-m;

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

{m = gcd(m0, n0)} r := m {r = gcd(m0, n0) }
Ass-axiom

50dBerLog 2007

A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do
 { gcd(m,n) = gcd(m0, n0) }

 if m > n then m:=m-n
else n:= n-m;

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

51dBerLog 2007

A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do
 { gcd(m,n) = gcd(m0, n0) }

 if m > n then m:=m-n
else n:= n-m;

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

{gcd(m,n) = gcd(m0, n0) ∧ ¬ (m = n) }

if m > n then m:=m-n
else n:= n-m;

 {gcd(m,n) = gcd(m0, n0) }

{gcd(m,n) = gcd(m0, n0) }
while ...
 {gcd(m,n) = gcd(m0, n0) ∧ ¬ ¬(m = n) }

While-rule

52dBerLog 2007

Hoare proof rules - implied

{φ’} C {ψ’}
Impl-rule

|- N φ’ → φ {φ} C {ψ} |- N ψ→ ψ’

NOTE We assume here that we have some underlying
extension of the proof system for predicate logic, in which we prove
formulae of the form φ’ → φ which are true in N - the interpretation of
natural numbers!!!!

53dBerLog 2007

A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do
 { gcd(m,n) = gcd(m0, n0) }

 if m > n then m:=m-n
else n:= n-m;

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

Proof obligations Comp rule:

|-N m = m0 ≥ 1 ∧ n = n0 ≥ 1

 -> gcd(m,n) = gcd(m0,n0)

|-N gcd(m,n)= gcd(m0,n0) ∧¬¬(m=n)

 -> m = gcd(m0, n0)

54dBerLog 2007

Proofs using Hoare rules

• Notation:
|-par { φ } C { ψ } iff

{ φ } C { ψ } has a proof using the Hoare rules
 and rules for |-N!!

• Are the Hoare rules sound and complete, i.e
 |-par { φ } C { ψ } iff |=par { φ } C { ψ } ???

55dBerLog 2007

Todays programme:
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules

56dBerLog 2007

Exercises

• Describe the semantics of predicate logic
– Kelly page 123 6.7 (scope rules)
– Kelly page 130 6.9 (expressiveness
– Kelly page 136 6.12 (satisfaction)
– Kelly page 138 6.19 (satisfiability, truth, validity)

• Describe and construct deductions in FOPL
– Kelly page 160 7.1 (i) (ii)

• Describe and construct deductions for Hoare triples
– LimProVer page 10 Exercise 1

