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Todays programme: 
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic  

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules
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Predicate Logic
• Sten kan ikke flyve og morlille kan ikke flyve

ergo er morlille en sten!
•  (∀x. (S(x) → ¬ F(x))) ∧ ¬F(morlille))   |=   S(morlille)

•Fugle kan flyve og piphans er en fugl
ergo kan piphans flyve!

•(∀x. (B(x) → F(x))) ∧ B(piphans))    |=    F(piphans)
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Predicate Logic
Female(girl).
Floats(duck).
Sameweigth(girl, duck).
Witch(X) :- Burns(X).
Burns(X) :- Wooden(X).
Wooden(X) :- Floats(X).
Floats(X) :- Sameweight(X, Y), Floats(Y).

Witch(girl)?
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Predicate Logic
Female(girl),
Floats(duck),
Sameweigth(girl, duck),
∀x Witch(x) ← Burns(x),
∀x Burns(x) ← Wooden(x),
∀x Wooden(x) ← Floats(x),
∀ x,y (Floats(x) ← Sameweight(x, y) ∧ Floats(y))

|= ?
Witch(girl)
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Predicate Logic - syntax examples

• Constants: girl, duck 
• Predicate symbols P: Female, Floats,.... with arity 1

Sameweight with arity 2
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Predicate Logic for Natural Numbers

∀ ∀x. Even(x) →   Even(succ(succ(x)))

∀ ∀x. ∀y. (Even(x)  ∧ y = x+2)   →   Even(y)

∀ ∀x. x + 0 = x

• (A(0) ∧ (∀x. A(x) → A(x+1)) → ∀x. A(x)
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Predicate Logic - syntax examples

• Constants: girl, duck 
• Predicate symbols P: Female, Floats,.... with arity 1

Sameweight with arity 2

• Constants 0,1,2,...
• Function symbols F: +, ×      both with arity 2
• Predicate symbols P: =          with arity 2
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Predicate Logic - syntax

• Variables x,y,z,...
• Constants C:  c1, c2,....

• Function symbols F:  f,g,h... each with some arity n>0

• Terms
t ::=    c   |   x |    f(t1, t2,..tn)
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Predicate Logic - first order language, wwf’s

• Predicate symbols P: P, Q, R  each with some arity n 0≥

• Well formed formulae wff:
Φ ::=   P(t1, t2, .., tn) |

             ¬ Φ  |  Φ ∨ Φ  |  Φ ∧ Φ  |  Φ → Φ  |
    ∀ x Φ    |   ∃ x Φ 
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Predicate Logic - Interpretations

• An interpretation I for a first order predicate logic language 
consists of

D, a domain of concrete values 

for each constant cI an element of D
for each f ∈ F with arity n, a function fI: Dn → D
for each P ∈ P with arity n, a subset PI ⊆ Dn
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Predicate Logic - interpretations example

• D: objects from the real world
girl: the girl in question
duck:   the duck on the scales
Female: those objects which are female
Sameweight: those pairs of objects with the same 
weight

I |=   ¬Wooden(girl) ∧ ¬Witch(duck)
I |=    ∃ x Female(x)       since       I |= Female(girl) 
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Predicate Logic
Female(girl),
Floats(duck),
Sameweigth(girl, duck),
∀x Witch(x) ← Burns(x),
∀x Burns(x) ← Wooden(x),
∀x Wooden(x) ← Floats(x),
∀ x,y (Floats(x) ← Sameweight(x, y) ∧ Floats(y))

|= ?
Witch(girl)
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Predicate Logic - interpretations example

• D: Natural numbers, N
0,1,..: the numbers zero, one,...
 +, × :   sum and mutiplication on N
=: equality on N

I |= ∀x. x + 0 = x
I |=    ∀ x ∃ y (y = x+1)

 
I |= x + 1 = y?
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Predicate Logic - valuations

• A valuation v in an interpretation I of a first order  language 
is a function from the terms of L to the domain D of I such 
that

v(c) = cI for all constants 
v(x) ∈ D for all variables x 
for each f ∈ F with arity n, v(f(t1,..,tn)) = fI(v(t1),..,v(tn))

• That is essentially a ”look-up table”
v: free variables → D
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Predicate logic - free and bound variables 

• (∀x (P(x) ∧ Q(x))    →    (P(x) → Q(y))

→

→

P Q

x y

∀ x

∧

P Q

x x

freebound
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Predicate logic - free and bound variables 

• (∀x (P(x) ∧ Q(x))    →    (P(x) → Q(y))

→

→

P Q

x y

∀ x

∧

P Q

x x

Scope of
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Predicate Logic - satisfaction (semantics)

• Given an interpretation, I, for a first order language, a 
valuation v, and a formula A, v satisfies A

• I |=v A iff

if A = P(t1, t2,.., tn) then (v(t1), v(t2),.., v(tn)) ∈ PI

if A = ∀ x B then I |=v[x←d] B for all d ∈ D

if A = ∃ x B then I |=v[x←d] B for some d ∈ D

if A = ¬ B, B ∨ C, B ∧ C, B → C 
then ”as in propositional logic”

 

18dBerLog 2007

Predicate Logic - interpretations examples

D: natural numbers 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=v ∃ y (y = x+1) ?
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Predicate Logic - interpretations examples

D: natural numbers 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=[0/x]  ∃ y (y = x+1) 

I |=[0/x]  ∃ y (x = y+1)
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Predicate Logic - interpretations examples

• D: integers   ...-2, -1, 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=[0/x]  ∃ y (y = x+1) 

I |=[0/x]  ∃ y (x = y+1)



  

 

 

21dBerLog 2007

Predicate Logic -Truth and Validity

• A wwf A is true in an interpretation I iff every valuation in 
I satisfies A, notation: I |= A

• A wwf A is false in an interpretation I iff no valuation in I 
satisfies A

• A wwf A of a first order language L is (logically) valid iff 
it is true in every interpretation of L, notation: |= A

• A wwf A of a first order language L is (logically) 
contradictory iff it is false in every interpretation of L
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Predicate Logic - interpretations examples

D: natural numbers 0, 1, 2,...
+, ×: adition and multiplication
=: equality

I |=   ∀x ∃ y (y = x+1)
I |=   ∀x ∃ y (x = y+1)   since I |=[0/x]  ∃ y (x = y+1)

|=   ∀x ∃ y (x = y+1) - follows from above!
|=   ∀x ∃ y (y = x+1) - why?
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Predicate Logic - quiz

Truth in N: True False Valid Contr.
1. x+1 = y
2. ∀x (x = x+1)
3. ∀x ∀y (x+y = y+x)
4. ∃ x (P(x) ∧¬ P(x))
5. (∃ x ¬ P(x)) →

 (¬ ∀x P(x)) 
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Predicate Logic - quiz

Truth in N: True False Valid Contr.
1. x+1 = y
2. ∀x (x = x+1)    √
3. ∀x ∀y (x+y = y+x)   √
4. ∃ x (P(x) ∧¬ P(x))  √  √
5. (∃ x ¬ P(x)) →

 (¬ ∀x P(x))   √  √
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Predicate Logic -Truth and Validity

• Following Kelly we include  the following predicate 
constants in our syntax for predicate logic:

• _|_ standing for the always false predicate, i.e.  the 
predicate which is false in every interpretation

∀  |  standing for the always true predicate, i.e.  the 
predicate which is true in every interpretation
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Todays programme: 
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic  

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules
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Predicate logic - axiomatic proof system

• Axioms:
– Ax1 A → ( B → A)
– Ax2 (A → ( B → C)) → ((A → B) → (A → C))
– Ax3 (¬A → ¬ B) → (B → A)

• Deduction rules:                          A,    A → B
– Modus ponens MP     B
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Predicate logic - axiomatic proof system

• Axioms:
– Ax1 A → ( B → A)
– Ax2 (A → ( B → C)) → ((A → B) → (A → C))
– Ax3 (¬A → ¬ B) → (B → A)
– Ax4 (∀x) A(x) → A(t/x) where t is free for x in A!
– Ax5  (∀x) (A → B) → (A → (∀x) B) no free occ’s of x in A!

• Deduction rules:                          A,    A → B
– Modus ponens MP     B
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Predicate logic - substitution

A[t/x] notation for 
”A with all free occurrences of x substituted by t”

• Examples
((∀x (P(x) ∧ Q(x))  →  (P(x) → Q(y)))   [f(y)/x]  =

  (∀x (P(x) ∧ Q(x))  →  (P(f(y)) → Q(y))

 ((∀y (P(y) ∧ Q(x))  →  (P(y) → Q(x)))  [f(y)/x]  = ??
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Predicate logic - substitution

• A[t/x] is only defined if ”t is free for x in A”: 
no free occurrence of x in A occurs within the scope of 
∀y or ∃y for any variable y occurring in t

• For all t,x,A, - t can always be made free for x in A
by a suitable renaming of bindings ∀y, ∃y in A

• Example
 ((∀y (P(y) ∧ Q(x))  →  (P(y) → Q(x)))  [f(y)/x]  = 
  (∀z (P(z) ∧ Q(f(y)))  →  (P(y) → Q(f(y))) 
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Predicate logic - axiomatic proof system

• Axioms:
– Ax1 A → ( B → A)
– Ax2 (A → ( B → C)) → ((A → B) → (A → C))
– Ax3 (¬A → ¬ B) → (B → A)
– Ax4 (∀x) A(x) → A(t) where t is free for x in A!
– Ax5  (∀x) (A → B) → (A → (∀x) B) no free occ’s of x in A!

• Inference rules:                            A,    A → B
– Modus ponens MP     B

– Generalisation G    A
            (∀x) A

 

32dBerLog 2007

Example of proof

• Assume that y does not occur in A(x)
Prove (∀x) A(x)  → (∀y) A(y) 

1.  (∀x) A(x) Hyp
2.  (∀x) A(x) → A(y) Ax4 (y free for x in A)
3.  A(y) MP 1,2
4.  (∀y) A(y) G
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Pred. Logic - soundness and completeness

• Gödel’s Completeness Theorem
Our set of proof rules (the 3 axioms and MP from 
propositional logic plus the 2 extra axioms and G) is 
sound and complete for predicate logic!

• Proof
Look for Gödel’s  proof!
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Validity for predicate logic

• Validity problem for predicate logic:
Given a first order predicate logic formula A,
is A valid, i.e. |= A?

• Theorem
The validity problem for predicate logic is unsolvable

Proof: can be shown by a reduction from PCP
•Corollary

The set of valid formulas in predicate logic is 
recursively enumerable, but not recursive

   Proof: ??
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Validity for predicate logic

• Validity problem for predicate logic:
Given a first order predicate logic formula A,
is A valid, i.e. |= A?

• Theorem
The validity problem for predicate logic is unsolvable

Proof: can be shown by a reduction from PCP
•Corollary

The set of valid formulas in predicate logic is 
recursively enumerable, but not recursive

   Proof: Gödel’s completeness theorem
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Todays programme: 
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic  

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules
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Programming language PLN - syntax

• Constants: 
natural numbers: 0, 1, 2,..   
boolean constants: true, false

• Con ::= 0, 1, 2, ... 
• Var::= x, y, z, ... 
• E::= Con |  Var | E + E  | E ∗ E |  (E)
• B::= true | false | ¬B | B ∧ B | B∨ B | E = E | (B)
• C::= x := E |  C ; C |  if B then C else C | while B do C
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PLN example  C = Fac

y := 1; z := 0;
while ¬ (z = x) do

z := z + 1
y := y ∗ z 
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PLN semantics

• A PLN state associates natural numbers to program 
variables:  States: Var → N

• The operational semantics of PLN defines the semantics of 
a program C as a PARTIAL function

Sem[C]: States → States
where Sem[C](s) = 

s’ if C when started in state s 
terminates in state s’

undefined otherwise
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PLN semantics, example C = Fac

y := 1; z := 0;
while ¬ (z = x) do

z := z + 1
y := y ∗ z 

Sem[Fac](x = 4, y = 0, z = 0,...)  = 
(x= 4, y = 24, z = 4,...)
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PLN specifications syntax

• A correctnes specification of a program C is a Hoare triple 
of the form

 { φ }  C  { ψ }
where φ (precondition) and ψ (postcondition) are first order 
predicate logic formulae over variables (including PLN 
program variables) and constants/functions/predicates 
interpreted in the model of natural numbers.

 

42dBerLog 2007

Hoare triples - for Fac
y := 1; z := 0;
while ¬ (z = x) do

z := z + 1
y := y ∗ z 

• |=par { | }   Fac  {y = x!}
• |=par {x>5}  Fac  {z=x}

• |=tot  { | }   Fac  {y = x!}
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Pre/postcondition interpretation

• Let N be the predicate logic interpretation of natural 
numbers with a (yet unspecified) vocabulary of constants, 
functions and predicates - all interpreted ”in the standard 
way”.

• Note that PLN states are nothing but predicate logic 
valuations!
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Hoare triples - semantics
• { φ } C { ψ } is said to be satisfied under partial correctness 

 |=par { φ } C { ψ }
iff for all states s, 

if N |=s φ, and Sem[C](s) is defined and equal to s’
then N |=s’ ψ

• { φ } C { ψ } is said to be satisfied under total correctness 
 |=tot { φ } C { ψ }

iff for all states s, 
if N |=s φ, then 
Sem[C](s) is defined, and if Sem[C](s) = s’ then N |=s’ ψ
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Hoare proof rules    := and ;

{ψ [E/x]}   x := E    {ψ} 
Ass-axiom

{φ}  C1  {η}        {η}  C2 {ψ}

{φ}  C1 ; C2  {ψ}
Comp-rule
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Hoare proof rules       if and while

{φ}   if B then C1 else C2  {ψ} 
If-rule

{ψ ∧ B}  C  {ψ}

{ψ}   while B  do C  {ψ ∧ ¬B} 
While-rule

{φ ∧ B}  C1  {ψ} {φ ∧ ¬B}  C2  {ψ}
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A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do

    if m > n then m:=m-n 
else n:= n-m; 

r:= m
{ r = gcd(m0, n0) }
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A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do

    if m > n then m:=m-n 
else n:= n-m; 

{η}
r:= m
{ r = gcd(m0, n0) }
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A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do

    if m > n then m:=m-n 
else n:= n-m; 

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

     

{m = gcd(m0, n0)} r := m {r = gcd(m0, n0) } 
Ass-axiom
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A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do
 { gcd(m,n) = gcd(m0, n0) }

    if m > n then m:=m-n 
else n:= n-m; 

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }
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A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do
 { gcd(m,n) = gcd(m0, n0) }

    if m > n then m:=m-n 
else n:= n-m; 

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

     

{gcd(m,n) = gcd(m0, n0) ∧ ¬ (m = n) }  

if m > n then m:=m-n 
else n:= n-m;

 {gcd(m,n) = gcd(m0, n0) }

{gcd(m,n) = gcd(m0, n0) }   
while ...
 {gcd(m,n) = gcd(m0, n0) ∧ ¬ ¬(m = n) } 

While-rule
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Hoare proof rules  -  implied

{φ’}  C  {ψ’} 
Impl-rule

|- N φ’ → φ        {φ} C  {ψ}        |- N  ψ→ ψ’ 

NOTE We assume here that we have some underlying
extension of the proof system for predicate logic, in which we prove 
formulae of the form φ’ → φ which are true in N - the interpretation of 
natural numbers!!!! 
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A proof of Euclid’s gcd algorithm

{ m = m0 ≥ 1 ∧ n = n0 ≥ 1 }

while ¬ (m = n) do
 { gcd(m,n) = gcd(m0, n0) }

    if m > n then m:=m-n 
else n:= n-m; 

{m = gcd(m0, n0) }

r:= m
{ r = gcd(m0, n0) }

     
Proof obligations Comp rule:

|-N m = m0 ≥ 1 ∧ n = n0 ≥ 1  

       ->   gcd(m,n) = gcd(m0,n0)

|-N gcd(m,n)= gcd(m0,n0) ∧¬¬(m=n) 

        ->   m = gcd(m0, n0) 
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Proofs using Hoare rules

• Notation: 
|-par { φ } C { ψ } iff 

{ φ } C { ψ } has a proof using the Hoare rules 
      and rules for |-N!!

• Are the Hoare rules sound and complete, i.e
 |-par { φ } C { ψ }    iff    |=par { φ } C { ψ } ???
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Todays programme: 
Predicate Logic and Program Verification
• Familiarity with basic concepts/results of predicate logic  

– Syntax: variables, quantification, scope
– Semantics: interpretations, valuations, satisfaction truth, validity
– Axiomatic proof system FOPL
– Gödels completeness theorem for predicate logic

• Describe the use of predicate logic in program verification
– Syntax: program specifications, Hoare triples
– Semantics: partial and total correctness
– Proof system: Hoare proof rules
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Exercises

• Describe the semantics of predicate logic
– Kelly page 123 6.7 (scope rules)
– Kelly page 130 6.9 (expressiveness
– Kelly page 136 6.12 (satisfaction)
– Kelly page 138 6.19 (satisfiability, truth, validity)

• Describe and construct deductions in FOPL
– Kelly page 160 7.1 (i) (ii)

• Describe and construct deductions for Hoare triples
– LimProVer page 10 Exercise 1 


