Chapter 6
Synchronization (1)
Plan

- Clock synchronization in distributed systems
 - Physical clocks
 - Logical clocks
- Ordered multicasting
 - JGroups
- Mutual exclusion
- Election
Time

- We have been somewhat careful to avoid talking about time until now
- But, in distributed system we need practical ways to deal with time
 - E.g., we may need to agree that update A occurred ‘before’ update B
 - Or offer a “lease” on a resource that expires ‘at’ time 10:10:01.50
 - Or guarantee that a time critical event will reach all interested parties ‘within’ 100ms
But what does Time “mean”?

- Time on a machine’s local clock
 - But was it set accurately?
 - And could it drift, e.g. run fast or slow?
 - What about faults, like stuck bits?
- Time on a global clock?
 - E.g., with GPS receiver
 - Still not accurate enough to determine which events happen before other events
- Or could try to agree on time…
Basic approaches

- Physical time
 - Synchronize local clocks (internal synchronization)
 - Synchronize with external source (external synchronization)

- Logical time
 - Avoid absolute statements about time
Computer Clocks

- Typical computer has \textit{timer} circuit for keeping tracks of time
 - Quartz crystal that \textit{oscillate} at a well-defined frequency
 - \textit{Counter} decremented each oscillation
 - \textit{Holding register} incremented when counter reaches zero
- Time always goes forwards on a single computer…
 - But not when compared across distributed nodes
- Crystals oscillate at slightly different frequency \textit{-> clock skew}
Computer Clocks

Difference between time on M2 and M1 goes from > 0 to < 0
Physical Time

• How to get absolute physical time on computer?
 – Atomic clocks are expensive…

• Universal Coordinated Time (UTC) sources often broadcast UTC second starts
 – E.g., WWV, Fort Collins, Colorado
 – Accuracy of ~ 10 msec (10 x 10^{-3} sec)

• Global Positioning System
 – Claimed error < 60 nsec for (60 x 10^{-9} sec)
Clock Synchronization Algorithms

- Generally have time server
 - Needs external time source
 - WWV, GPS, ninja, administrator, …

- System model
 - Timers work within a maximum drift rate, ρ
 \[1 - \rho \leq \frac{dC}{dt} \leq 1 + \rho \]
 - To guarantee that clocks do not drift more than δ seconds apart, synchronize at least every Δt seconds:
 \[\Delta t \cdot 2\rho \leq \delta \Rightarrow \Delta t \leq \frac{\delta}{2\rho} \]
Cristian’s Algorithm

- A’s offset relative to B, \(\theta \), is given by

\[
dT_{\text{req}} \approx dT_{\text{res}} \Rightarrow \theta \approx \left(T_3 + \frac{(T_2 - T_1) + (T_4 - T_3)}{2} \right) - T_4 = \frac{(T_2 - T_1) + (T_3 - T_4)}{2}
\]

- \(\theta \geq 0 \) : speed up A’s (virtual) clock towards B’s
- \(\theta < 0 \) : slow down A’s (virtual) clock towards B’s
Network Time Protocol

- The delay estimation, δ, is given by $\delta = \frac{(T_2 - T_1) + (T_4 - T_3)}{2}$
 - Calculate (θ_A, δ_A) and (θ_B, δ_B) multiple (8) times
 - Choose θ for which δ is minimal as offset estimate

- Divide time servers into *strata*
 - External clock is stratum 0
 - Stratum A server adjust their time according to stratum B server if $B < A$, then becomes stratum B+1 server
The Berkeley Algorithm

- Time daemon/server is actively requesting current time difference from machines
 - Calculates average and requests machines to adjust clock
- Works if no interface with external machine with physical time synchronization
Clock Synchronization in Wireless Networks

• Challenges
 – Most machines cannot contact each other directly
 – Large overhead in multihop routing
 – Cannot deploy fixed time servers
 – Need to optimize for energy consumption
Reference Broadcast Synchronization (RBS)

Variable:
- Context switches, system call overhead
- Media Access Control protocol

Constant:
- Message preparation
- Critical path

Delivery time to app.

≈ 0

Sufficiently constant:
- Can timestamp early
Reference Broadcast Synchronization (RBS)

- Assume we know clock skew and have corrected for it
 - I.e., clock offset can be regarded as constant
- Algorithm
 - Transmitter broadcasts m reference packets
 - Each of n receivers note when reference was observed according to local clock
 - Receivers exchange observations
 - Calculate pairwise offset as $\text{Offset}[i,j] = \frac{1}{m} \sum_{k=1}^{m} (T_{i,k} - T_{j,k})$
 - Where
 - $T_{i,k}$ is time of receipt of message k at node i
Logical Time

• The Berkeley and RBS algorithms do not necessarily give any correspondence to UTC
 – But they do give correspondence to computer clock
• A lot of times this is not necessary
 – If we just want to know if event a happened ”before” or ”after” event b
Lamport’s Approach

• Leslie Lamport suggested that we should reduce time to its basics
 – Cannot order events according to a global clock
 • None available…
 – Can use logical clock
 • Time basically becomes a way of labeling events so that we may ask if event A happened before event B
 • Answer should be consistent with what could have happened with respect to a global clock
 – Often this is what matters
Drawing time-line pictures:
Drawing time-line pictures:

- A, B, C and D are “events”.
 - Could be anything meaningful to the application
 - microcode, program code, file write, message handling, …
 - So are snd(m) and rcv(m) and deliv(m)
- What ordering claims are meaningful?
Drawing time-line pictures:

- A happens before B, and C before D
 - “Local ordering” at a single process
 - Write $A \rightarrow^p B$ and $C \rightarrow^q D$
Drawing time-line pictures:

- \(\text{snd}_p(m) \) also happens before \(\text{rcv}_q(m) \)
 - “Distributed ordering” introduced by a message
 - Write \(\text{snd}_p(m) \xrightarrow{M} \text{rcv}_q(m) \)
Drawing time-line pictures:

- A happens before D
 - Transitivity: A happens before \(\text{snd}_p(m)\), which happens before \(\text{rcv}_q(m)\), which happens before D
Drawing time-line pictures:

- B and D are concurrent
 - Looks like B happens first, but D has no way to know. No information flowed…
The Happens-Before Relation

- We’ll say that “A happens-before B”, written $A \rightarrow B$, if
 - 1) $A \rightarrow^P B$ according to the local ordering, or
 - 2) A is a snd and B is a rcv and $A \rightarrow^M B$, or
 - A and B are related under the transitive closure of rules 1. and 2.

- Thus, $A \rightarrow D$

- So far, this is just a mathematical notation, not a “systems tool”
 - A new event seen by a process happens logically after other events seen by that process
 - A message receive happens logically after a message has been sent
Logical clocks

• A simple tool that can capture parts of the happens before relation

• First version: uses just a single integer
 – Designed for big (64-bit or more) counters
 – Each process p maintains C_p, a local counter
 – A message m will carry C_m
Rules for managing logical clocks

- When an event happens at a process p it increments C_p
 - Any event that matters to p
 - Normally, also snd and rcv events (since we want receive to occur “after” the matching send)

- When p sends m, set
 - $C_m = C_p$

- When q receives m, set
 - $C_q = \max(C_q, C_m) + 1$
Time-line with LT annotations

- $C(A) = 1$, $C(snd_p(m)) = 2$, $C(m) = 2$
- $C(rcv_q(m)) = \max(1,2)+1 = 3$, etc…
Logical clocks

• If A happens before B, A→B, then C(A)<C(B)
 – A→B : A = E0 →… →En = B, where each pair is ordered either by →ₚ or →ₘ
 • LT associated with these only increase

• But converse might not be true:
 – If C(A)<C(B) can’t be sure that A→B
 – This is because processes that don’t communicate still assign timestamps and hence events will “seem” to have an order
Can we do better?

• One option is to use *vector* clocks
• Here we treat timestamps as a vector
 – One counter for each process
• Rules for managing vector times differ from what we did with logical clocks
Vector clocks

- Clock is a vector: e.g. VC(A)=[1, 0]
 - We’ll just assign p index 0 and q index 1
 - Vector clocks require either agreement on the numbering/static membership, or that the actual process id’s be included with the vector

- Rules for managing vector clock
 - When event happens at p, increment VC_p[index_p]
 - Normally, also increment for snd and rcv events
 - When sending a message, set VC(m)=VC_p
 - When receiving, set VC_q=max(VC_q, VC(m))
 - Where “max” is max on components of vector
 - VC(m)[index_p]-1 events causally preceded m at p
Time-line with VT annotations

Could also be [1,0] if we decide not to increment the clock on a snd event. Decision depends on how the timestamps will be used.
Rules for comparison of VCs

- We’ll say that $VC_A \leq VC_B$ if
 - $\forall i, VC_A[i] \leq VC_B[i]$
- And we’ll say that $VT_A < VT_B$ if
 - $VC_A \leq VC_B$ but $VC_A \neq VC_B$
 - That is, for some i, $VC_A[i] < VC_B[i]$
- Examples?
 - $[2,4] \leq [2,4]$
 - $[1,3] < [7,3]$
 - $[1,3]$ is “incomparable” to $[3,1]$
Time-line with VC annotations

- VC(A)=[1,0]. VC(D)=[2,4]. So VC(A)<VC(D)
- VC(B)=[3,0]. So VC(B) and VC(D) are incomparable
Vector time and happens before

• If $A \rightarrow B$, then $\text{VC}(A) < \text{VC}(B)$
 – Write a chain of events from A to B
 – Step by step the vector clocks get larger

• But also $\text{VC}(A) < \text{VC}(B)$ then $A \rightarrow B$
 – Two cases (formally by induction)
 • If A and B both happen at same process p – all events seen by p increments vector clocks
 • If A happens at p and B at q, can trace the path back by which q “learned” $\text{VT}(A)[p]$ since q only updates $\text{VT}(A)[p]$ based on message receipt from, say, q'
 – If $q' \neq p$ trace further back

• (Otherwise A and B happened concurrently)
What can we use this for?

- May want different kinds of guarantees of when multicast messages are delivered at receivers
 - None
 - Delivery in arbitrary order (in practice FIFO)
 - E.g., many reads information
 - FIFO
 - Delivery in order of sending (with respect to one process)
 - E.g., only one process updates data but many reads
 - Causal
 - Delivery with respect to happens-before
 - E.g., efficient distributed locking
 - Total
 - Delivery with respect to a total/global order
 - E.g., for replicated updates

- I.e., ordered multi-casting
What can we use this for?

- May want different kinds of guarantees of when multicast messages are delivered at receivers:
 - None
 - Delivery in arbitrary order (in practice FIFO)
 - E.g., many reads information
 - FIFO
 - Delivery in order of sending (with respect to one process)
 - E.g., only one process updates data but many reads
 - Causal
 - Delivery with respect to happens-before
 - E.g., efficient distributed locking
 - Total
 - Delivery with respect to a total/global order
 - E.g., for replicated updates

- I.e., ordered multi-casting

We will, for now, assume that
- There are no failures
- We have stable process groups
Example: Totally Ordered Multicasting

- **Update 1**
 - Add 100$ to account
- **Update 2**
 - Add 1% interest to account
- **Update 1; Update 2**
 - $(1000$ + 100)$ \times 1.01 = 1111$
- **Update 2; Update 1**
 - 1000\times 1.01 + 100 = 1110$
Totally Ordered Multicasting

- **Implementation**
 - Use a sequencer
 - Get a number and use that as sequence number for multicast
 - Receiving processes deliver in that order
 - Distributed
 - Each process attaches a Lamport clock to message
 - When received, acknowledge to everybody
 - Order messages in queue according to sequence number (and process number)
 - Deliver message at front when it has been acknowledged by all processes
 - Queues become identical
Enforcing Causal Communication

• Want to ensure that is $snd(m) \rightarrow snd(m^*)$ then $del(m) \rightarrow del(m^*)$
 – Use vector timestamps
 – Only increment when sending and receiving
 – Adjust when delivering
• Deliver a message m from i when
 – m is the next message expected from i
 • i.e., $ts(m)[i] = VC_j[i] + 1$
 – All messages that i has seen from other processes have been seen by us
 • i.e., $ts(m)[k] <= VC_j[k]$, $k \neq j$
Cost

• Orderings give increased guarantees and implementation cost
 – None < FIFO < causal < total

• None/FIFO ordering is easy to implement
 – Except for failures, transport layers take care of this
 – May be used efficiently

• Causal ordering harder to implement efficiently
 – But can be implemented very efficiently
 – May be used efficiently
 • Do not need to wait for own massages
 • Can deliver concurrent messages immediately

• Total ordering is hard to implement efficiently
 – Sometimes needed
 – Also hard to use efficiently
Summary

• We cannot achieve global, synchronized time in a distributed system

• Physical time
 – Can synchronize (with high probability) within a constant ρ

• Logical time
 – Advance time only as consequence of logical middleware events
 – Can be used to implement, e.g., ordered multicast